In situ transmission electron microscopy of ionic conductivity and reaction mechanisms in ultrathin solid oxide fuel cells.
نویسندگان
چکیده
Solid oxide fuel cells (SOFCs) are promising candidates for use in alternative energy technologies. A full understanding of the reaction mechanisms in these dynamic material systems is required to optimize device performance and overcome present limitations. Here, we show that in situ transmission electron microscopy (TEM) can be used to study redox reactions and ionic conductivity in SOFCs in a gas environment at elevated temperature. We examine model ultrathin half and complete cells in two environmental TEMs using off-axis electron holography and electron energy-loss spectroscopy. Our results from the model cells provide insight into the essential phenomena that are important for the operation of commercial devices. Changes in the activities of dopant cations in the solid electrolyte are detected during oxygen anion conduction, demonstrating the key role of dopants in electrolyte architecture in SOFCs.
منابع مشابه
PHASE STABILITY AND CONDUCTIVITY OF δ-Bi2O3 WITH MIXTURE OF YTTRIUM AND YTTERBIUM OXIDES
In this research Bi2O3 was doped with mixtures of 8, 10, 12 and 18 mol % of Y2O3 and Yb2O3 to stabilizing the δ-Bi2O3 phase using solid state reaction technique. Experimental samples were fabricated by isostatic pressing and sintering at 850 °C for 24 h. X-ray diffraction analysis detected cubic phase (δ-Bi2O3) as the sole stable crystalline phase in samples including 12 and 18 mol % of Y2O3 an...
متن کاملNanostructuring Platinum Nanoparticles on Ni/Ce0.8Gd0.2O2-δ Anode for Low Temperature Solid Oxide Fuel Cell via Single-step Infiltration: A Case Study
With the aim of promoting the Ni/Ce0.8Gd0.2O2-δ (Ni/GDC20) cermet anodic performance of low temperature solid oxide fuel cell (LT-SOFC) [1], nanostructuring platinum nanoparticles on NiO/GDC composite was done by single-step wet-infiltration of hexachloroplatinic acid hexahydrate (H2PtCl6.6H2O) precursor on NiO/GDC20 composite. The anodic polarization resistance was measured using symmetr...
متن کاملImprovement of ionic conductivity of gadolinium doped ceria electrolyte with nano CuO sintering aid
Gadanium doped cerium oxide ceramic (GDC) is widely used as solid electrolytes in solid oxide fuel cells because of its high oxygen ion conductivity. In this study, the effect of addition of nano CuO as a sintering aid on the properties of GDC electrolyte were investigated. For this purpose, 0.2, 0.5, and 1% mole of nano Cuo was added to GDC ceramics, which was synthesized by the solid-state me...
متن کاملCerium Reduction at the Interface between Ceria and Yttria-stabilised Zirconia and Implications for Interfacial Oxygen Non-stoichiometry
CeO2 and Y2O3-stabilized zirconia (YSZ) are two typical candidates for electrolyte materials in solid oxide fuel cells attributed to their high ion conductivities. However, the conductivities of these materials are closely connected with high temperatures. Therefore, it is important to develop electrolyte materials which can conduct oxygen ions at lower temperatures. Recent experiments have sho...
متن کاملThe Effect of cathode Porosity on Solid Oxide Fuel Cell Performance
In the present study, the effect of porosity on the cathode microstructure (50:50 wt. % LSM: YSZ) of a Solid Oxide Fuel Cell (SOFC) has been examined. A 3-D finite element method for Mixed Ionic and Electronic Conducting Cathodes (MIEC) is presented to study the effects of porosity on cell performance. Each microstructure was realized using the Monte Carlo approach with the isotropic type of gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada
دوره 20 6 شماره
صفحات -
تاریخ انتشار 2014